Math 409 Midterm 1 practice \#1

Name:

This exam has 3 questions, for a total of 100 points.
Please answer each question in the space provided. No aids are permitted.

Question	Points	Score
1	40	
2	30	
3	30	
Total:	100	

Question 1. (40 pts)
In each of the following eight cases, indicate whether the given statement is true or false. No justification is necessary.
(a) Let E be a set and suppose that there exists a surjective function $f: \mathbb{R} \rightarrow E$. Then E is uncountable.

Solution: False.
(b) If E is a subset of \mathbb{R} which has a supremum, then the set $-E=\{-x: x \in E\}$ has an infimum.

Solution: True.
(c) Let $a \in \mathbb{R}$. Then $|a|<\varepsilon$ for all $\varepsilon>0$ if and only if $a=0$.

Solution: True.
(d) If $\left\{E_{x}\right\}_{x \in \mathbb{R}}$ is a collection of finite sets indexed by the real numbers, then $\bigcup_{x \in \mathbb{R}} E_{x}$ is at most countable.

Solution: False.
(e) Every subset of \mathbb{R} has at most two suprema.

Solution: True.
(f) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$. Then $f^{-1}([0,1])=[-1,1]$.

Solution: True.
(g) Let $A_{1}, A_{2}, A_{3}, \cdots$ be nonempty finite subsets of \mathbb{N} such that $A_{n} \cap A_{m}=\emptyset$ for all distinct $n, m \in \mathbb{N}$. Define the function $f: \mathbb{N} \rightarrow \mathbb{N}$ by declaring $f(n)$ to be the least element of A_{n}. Then f is injective.

Solution: True.
(h) Let $A_{1}, A_{2}, A_{3}, \cdots$ be nonempty bounded subsets of \mathbb{R} such that $A_{n} \cap A_{m}=\emptyset$ for all distinct $n, m \in \mathbb{N}$. Define the function $f: \mathbb{N} \rightarrow \mathbb{R}$ by $f(n)=\sup A_{n}$. Then f is injective.

Solution: False.

Question 2. (30 pts)

(a) State the well-ordering principle.

Solution: If E is a nonempty subset of \mathbb{N}, then E has a least element.
(b) Prove that $2^{n-1} \leq n$! for all $n \in \mathbb{N}$.

Solution: Let $A(n)$ be the statement that

$$
2^{n-1} \leq n!
$$

If $n=1$, then the LHS (left hand side) is $2^{0}=1$ and the RHS (right hand side) is $1!=1$. Therefore, $A(1)$ is true.
Now suppose $A(n)$ is true for some $n \geq 1$. In particular, $n+1 \geq 2$. Then for $A(n+1)$,

$$
\mathrm{LHS}=2^{n}=2 \cdot 2^{n-1} \leq 2 \cdot n!\leq(n+1) \cdot n!=(n+1)!=\text { RHS }
$$

Thus $A(n+1)$ is true whenever $A(n)$ is true. We conclude by induction that $A(n)$ is true for all $n \in \mathbb{N}$.

Question 3. (30 pts)

(a) State the completeness axiom for \mathbb{R}.

Solution: For every nonempty subset $E \subset \mathbb{R}$, if E is bounded above, then E has a finite supremum.
(b) Let A be a nonempty bounded subset of \mathbb{R}, and consider the set $B=\left\{x^{2}: x \in A\right\}$. Prove that sup B exists.

Solution: B is nonempty, since A is nonempty. Because A is bounded, there exists $M \geq 0$ such that $|x| \leq M$ for all $x \in A$. Then we have

$$
x^{2}=|x|^{2} \leq M^{2}
$$

for all $x \in A$. In other words, B is bounded above by M^{2}. Now by the completeness of \mathbb{R}, we conclude that B has a finite supremum.
(c) Give an example to show that the equality $\sup B=(\sup A)^{2}$ may fail in part (b).

Solution: For example, let $A=\{-4,1\}$. Then $\sup A=1$, hence $(\sup A)^{2}=1$. On the other hand, $B=\{16,1\}$ and sup $B=16$. So $\sup B \neq(\sup A)^{2}$.

